foundation repair specialists Coronado

Foundation (engineering)

Shallow foundations of a house versus the deep foundations of a skyscraper. A foundation (or, more commonly, base) is the element of an architectural structure which connects it to the ground, and transfers loads from the structure to the ground. Foundations are generally considered either shallow or deep.[1] Foundation engineering is the application of soil mechanics and rock mechanics (Geotechnical engineering) in the design of foundation elements of structures. The simplest foundation, a padstone. Latvian Ethnographic Open Air Museum Buildings and structures have a long history of being built with wood in contact with the ground.[2][3] Post in ground construction may technically have no foundation. Timber pilings were used on soft or wet ground even below stone or masonry walls.[4] In marine construction and bridge building a crisscross of timbers or steel beams in concrete is called grillage.[5] Perhaps the simplest foundation is the padstone, a single stone which both spreads the weight on the ground and raises the timber off the ground.[6] Staddle stones are a specific type of padstone. Dry stone and stones laid in mortar to build foundations are common in many parts of the world. Dry laid stone foundations may have been painted with mortar after construction. Sometimes the top, visible course of stone is hewn, quarried stones.[7] Besides using mortar, stones can also be put in a gabion.[8] One disadvantage is that if using regular steel rebars, the gabion would last much less long than when using mortar (due to rusting). Using weathering steel rebars could reduce this disadvantage somewhat. Rubble trench foundations are a shallow trench filled with rubble or stones. These foundations extend below the frost line and may have a drain pipe which helps groundwater drain away. They are suitable for soils with a capacity of more than 10 tonnes/m² (2,000 pounds per square foot). Main article: Shallow foundation Play media Shallow foundation construction example Shallow foundations, often called footings, are usually embedded about a metre or so into soil. One common type is the spread footing which consists of strips or pads of concrete (or other materials) which extend below the frost line and transfer the weight from walls and columns to the soil or bedrock. Another common type of shallow foundation is the slab-on-grade foundation where the weight of the structure is transferred to the soil through a concrete slab placed at the surface. Slab-on-grade foundations can be reinforced mat slabs, which range from 25 cm to several meters thick, depending on the size of the building, or post-tensioned slabs, which are typically at least 20 cm for houses, and thicker for heavier structures. Main article: Deep foundation A deep foundation is used to transfer the load of a structure down through the upper weak layer of topsoil to the stronger layer of subsoil below. There are different types of deep footings including impact driven piles, drilled shafts, caissons, helical piles, geo-piers and earth stabilized columns. The naming conventions for different types of footings vary between different engineers. Historically, piles were wood, later steel, reinforced concrete, and pre-tensioned concrete. Main article: Monopile foundation A monopile foundation is a type of deep foundation which uses a single, generally large-diameter, structural element embedded into the earth to support all the loads (weight, wind, etc.) of a large above-surface structure. A large number of monopile foundations[9] have been utilized in recent years for economically constructing fixed-bottom offshore wind farms in shallow-water subsea locations.[10] For example, a single wind farm off the coast of England went online in 2008 with over 100 turbines, each mounted on a 4.74-meter-diameter monopile footing in ocean depths up to 16 metres of water.[11] Inadequate foundations in muddy soils below sea level caused these houses in the Netherlands to subside. Foundations are designed to have an adequate load capacity depending on the type of subsoil supporting the foundation by a geotechnical engineer, and the footing itself may be designed structurally by a structural engineer. The primary design concerns are settlement and bearing capacity. When considering settlement, total settlement and differential settlement is normally considered. Differential settlement is when one part of a foundation settles more than another part. This can cause problems to the structure which the foundation is supporting. Expansive clay soils can also cause problems.

Zebras Fix What Unicorns Break

A small submersible AC sump pump with a garden hose connector A sump pump is a pump used to remove water that has accumulated in a water-collecting sump basin, commonly found in the basements of homes. The water may enter via the perimeter drains of a basement waterproofing system, funneling into the basin or because of rain or natural ground water, if the basement is below the water table level. Sump pumps are used where basement flooding happens regularly and to solve dampness where the water table is above the foundation of a home. Sump pumps send water away from a house to any place where it is no longer problematic, such as a municipal storm drain or a dry well. Pumps may discharge to the sanitary sewer in older installations. Once considered acceptable, this practice may now violate the plumbing code or municipal bylaws, because it can overwhelm the municipal sewage treatment system. Municipalities urge homeowners to disconnect and reroute sump pump discharge away from sanitary sewers. Fines may be imposed for noncompliance. Many homeowners have inherited their sump pump configurations and do not realize that the pump discharges into the sewer. Usually hardwired into a home's electrical system, sump pumps may have a battery backup. The home's pressurized water supply powers some pumps, eliminating the need for electricity at the expense of using potable water, potentially making them more expensive to operate than electrical pumps and creating an additional water disposal problem. Since a sump basin may overflow if not constantly pumped, a backup system is important for cases when the main power is out for prolonged periods of time, as during a severe storm. There are generally two types of sump pumps—pedestal and submersible. In the case of the pedestal pump, the motor is mounted above the sump—where it is more easily serviced, but is also more conspicuous. The pump impeller is driven by a long, vertical extension shaft and the impeller is in a scroll housing in the base of the pump. The submersible pump, on the other hand, is entirely mounted inside the sump, and is specially sealed to prevent electrical short circuits. There is debate about which variety of sump pump is better. Pedestal sump pumps usually last longer (25 to 30 years) if they are installed properly and kept free of debris. They are less expensive and easier to remove. Submersible pumps will only last 5 to 15 years. They are more expensive to purchase but can take up debris without clogging.[1][2] Sump pump systems are also utilized in industrial and commercial applications to control water table-related problems in surface soil. An artesian aquifer or periodic high water table situation can cause the ground to become unstable due to water saturation. As long as the pump functions, the surface soil will remain stable. These sumps are typically ten feet in depth or more; lined with corrugated metal pipe that contains perforations or drain holes throughout. They may include electronic control systems with visual and audible alarms and are usually covered to prevent debris and animals from falling in. Modern sump pump components in the United States are standardized. They consist of: The selection of a sump pump will depend on the application in which it will be used. To select the appropriate sump pump, consider the following: A secondary, typically battery-powered sump pump can operate if the first pump fails. A battery-powered secondary pump requires the following components in parallel with the above others: Alternative sump pump systems can be driven by municipal water pressure. Water-powered sump pumps are similar to backup-battery-driven systems with a separate pump, float and check valves. During installation, the float is mounted in the sump pit above the normal high water mark. Under normal conditions, your main electric powered sump pump will handle all the pumping duties. When water rises higher than normal for any reason, the backup float in the sump is lifted and activates the backup sump pump. As municipal water rushes through the ejector, it creates a powerful suction force which causes the PVC pipe to act like a giant soda straw, drawing water up from the sump and ejecting it outdoors. There are no impellers, turbines, motors, or mechanical parts to wear out. There are no batteries, wires, or chargers to monitor, tend to, or replace.[3] One can also use an ejector pump that uses an ordinary garden hose to supply high-pressure water and another garden hose to carry the water away. Although such ejector pumps waste water and are relatively inefficient, they have the advantage of having no moving parts and offer the utmost in reliability. If the backup sump system is rarely used, a component failure may not be noticed, and the system may fail when needed. Some battery control units test the system periodically and alert on failed electrical components. A simple, battery-powered water alarm can be hung a short distance below the top of the sump to sound an alarm should the water level rise too high. Illustration of a typical pedestal-type sump pump. Sump basins and sump pumps must be maintained. Typical recommendations suggest examining equipment every year. Pumps running frequently due to higher water table, water drainage, or weather conditions should be examined more frequently. Sump pumps, being mechanical devices, will fail eventually, which could lead to a flooded basement and costly repairs. Redundancy in the system (multiple/secondary pumps) can help to avoid problems when maintenance and repairs are needed on the primary system.[4] When examining a sump pump and cleaning it, dirt, gravel, sand, and other debris should be removed to increase efficiency and extend the life of the pump. These obstructions can also decrease the pump's ability to drain the sump, and can allow the sump to overflow. The check valve can also jam from the debris. Examine the discharge line opening, when applicable, to ensure there are no obstructions in the line. Even a partially obstructed discharge line can force a sump pump to work harder and increase its chance of overheating and failure.[5] Float switches are used to automatically turn the sump pump on when water rises to a preset level. Float switches must be clear of any obstructions within the sump. A float guard can be used to prevent the float switch from accidentally resting on the pump housing, and remaining on. As mechanical float switches can wear out, they should be periodically tested by actuating them manually to assure that they continue to move freely and that the switch contacts are opening and closing properly. If left in standing water, pedestal pumps should be manually run from time to time, even if the water in the sump isn't high enough to trip the float switch. This is because these pumps are incapable of removing all the water in a sump and the lower bearing or bushing for the pump impeller shaft tends to remain submerged, making it prone to corrosion and eventually freezing the drive shaft in the bearing. In the alternative, a pedestal pump that is expected to remain idle for an extended time should be removed from the sump and stored out of water, or the sump should be mopped out to bring the level of the remaining water well below the lower shaft bearing.

Sump pump

"Toolshed" redirects here. For the Tool demo album, see 72826. "Bike shed" redirects here. For bike-shedding, see law of triviality. A rural shed Modern secure bike sheds Garden shed with gambrel roof A shed is typically a simple, single-storey roofed structure in a back garden or on an allotment that is used for storage, hobbies, or as a workshop. Sheds vary considerably in the complexity of their construction and their size, from small open-sided tin-roofed structures to large wood-framed sheds with shingled roofs, windows, and electrical outlets. Sheds used on farms or in industry can be large structures. The main types of shed construction are metal sheathing over a metal frame, plastic sheathing and frame, all-wood construction (the roof may be asphalt shingled or sheathed in tin), and vinyl-sided sheds built over a wooden frame. A culture of shed enthusiasts exists in several countries for people who enjoy building sheds and spending time in them for relaxation. In Australia and New Zealand there are magazines called The Shed, an association for shed hobbyists (the Australian Men's Shed Association), and a book entitled Men and Sheds. Depending on the region and type of use, a shed may also be called an "outhouse", "outbuilding" or "shack". The simplest and least-expensive sheds are available in kit form. These kits are designed for regular people to be able to assemble themselves using commonly available tools (e.g., screwdriver). Both shed kits and DIY (do-it-yourself) plans are available for wooden and plastic sheds. Sheds are used to store home and garden tools and equipment such as lawn tractors, and gardening supplies. In addition, sheds can be used to store items that are not suitable for indoor storage, such as petrol (gasoline), pesticides, or herbicides. For homes with small gardens or modest storage needs, there are several types of very small sheds. The sheds not only use less ground area but also have a low profile less likely to obstruct the view or clash with the landscaping. A metal garden shed made with sheets of galvanized steel over a steel frame These small sheds include corner sheds, which fit into a corner (3 ft tall × 3 wide × 2 deep, or 0.91 m × 0.91 m × 0.61 m), vertical sheds (5 ft × 3 ft × 4 ft deep, or 1.52 m × 0.91 m × 1.22 m), horizontal sheds (3 ft × 5 ft × 4 ft or 0.91 m × 1.52 m × 1.22 m), and tool sheds. When a shed is used for tool storage, shelves and hooks are often used to maximize the storage space. Gambrel-style roofed sheds (sometimes called baby barns), which resemble a Dutch-style barn, have a high sloping roofline which increases storage space in the "loft" area. Some Gambrel-styles have no loft and offer the advantage of reduced overall height. Another style of small shed is the saltbox-style shed. Many sheds have either a pent or apex roof shape. A pent shed features a single roof section which is angled downwards to let rainwater run off, with more headroom at the front than the back. This is a simple, practical design that will fit particularly well next to a wall or fence. It is also usually lower than the typical apex shed, so could be a better choice if there are any height restrictions. A pent shed may be free-standing or attached to a wall (when it is known, unsurprisingly, as a wall shed). An apex shed has a pointed roof in an inverted V shape similar to the roof line of many houses. Two roof sections meet at a ridge in the middle, providing more headroom in the centre than at the sides. This type is generally regarded as a more attractive and traditional design, and may be preferable if the shed is going to be visible from the house. [1] A twist on the standard apex shape is the reverse apex shed. In this design, the door is set in a side wall instead of the front. The main advantage of the reverse apex design is that the door opens into the widest part of the shed instead of the narrowest, so it's easier to reach into all areas to retrieve or store equipment. [2] A tall shed with windows and a shingled roof Larger, more-expensive sheds are typically constructed of wood and include features typically found in house construction, such as windows, a shingled roof, and electrical outlets. Larger sheds provide more space for engaging in hobbies such as gardening, small engine repair, or tinkering. Some sheds have small porches or include furniture, which allows them to be used for relaxation purposes. In some cases, teleworkers and homeworkers in general who live in mild climates use small to medium-sized wooden garden sheds as outdoor offices. There is a growing industry in providing "off the peg" garden offices to cater for this demand, particularly in the UK but also in the US. Shed owners can customize wooden sheds to match the features (e.g., siding, trim, etc.) of the main house. A number of decorative options can be added to sheds, such as dormers, shutters, flowerboxes, finials, and weathervanes. As well, practical options can be added such as benches, ramps, ventilation systems (e.g., in cases where a swimming pool heater is installed in a shed), and electric lighting. Sheds designed for gardening, called "potting sheds", often feature windows or skylights for illumination, ventilation grilles, and a potter's bench for mixing soil and re-potting plants. "Bicycle shed" redirects here. For "the bicycle shed effect", see Law of triviality. A bike shed The main types of shed construction are metal sheathing over a metal frame, plastic sheathing and frame, all-wood construction (wood frame, wood siding and wood roof), and vinyl-sided sheds built over a wooden frame. Each type has various advantages and disadvantages that a homeowner has to consider.[4] For example, while metal sheds are fire and termite-resistant, they can rust over time, or be severely damaged by high winds or heavy snow loads. Wood sheds are easier to modify or customize than plastic or metal, because carpentry tools and basic carpentry skills are more readily available. Vinyl-sided, wood-framed sheds blend the strength of a wood frame with the maintenance-free aspect of vinyl siding (it does not need to be painted or varnished). The International Building Code (IBC) defines a shed as a building or structure of an accessory character; it classifies them under utility and miscellaneous group U (Chapter 3 Section 312). A corrugated iron shed Metal sheds made from thin sheet metal sheathing (galvanized steel, aluminium, or corrugated iron) attached to a metal frame. Metal sheds are a good choice when long-term strength and resistance to fire, rot, or termites is desired. However, metal sheds may rust over time, particularly if they are constructed from steel that is not galvanized. Be aware that concrete is highly corrosive so care needs to be taken when assembling your shed to avoid contact with the outside panels.[5] As well, some types of metal sheds that have thin walls are easily dented, which may makes some types of thin metal sheds a poor choice for vandal-prone areas or for high-traffic activities such as small businesses. In cold climates, metal sheds with thin walls need to have snow and ice cleared from the roof, because the thin metal may be damaged by a heavy accumulation. Since thin metal sheds weigh much less than wood or PVC plastic sheds, thin metal sheds are more at risk of being damaged by heavy winds. To prevent wind damage, thin metal sheds should be attached to a concrete foundation with screws.[6] In countries where the climate is generally mild, such as Australia, very large metal sheds are used for many types of industry. Corrugated metal sheds may be better able to withstand wind and snow loads, as the corrugated shape makes the metal stronger than flat tin. Lifetime brand blow-molded plastic sheds Plastic shed kits utilizing heavy molded plastics such as PVC and polyethylene may be less expensive than sheet-metal sheds. PVC resins and high-impact, UV light-resistant polyethylene make plastic outdoor sheds stronger, lighter, more durable, and more resistant to denting and chipping than wood, and tend to be more stable. Plastic shed kits sided with vinyl are typically among the least-expensive types of shed construction. Higher-quality sheds use UV-resistant plastic and powder-coated metal frames. Many plastic sheds are modular to allow for easy extensions, peg-boards, shelving, attic-storage, windows, skylights, and other accessories to be added later, if these additions are purchased from the manufacturer. Plastic sheds are not susceptible to termite or wood-boring insect damage, and they require little maintenance. Being rot-proof they do not need to have preservative applied. This makes them preferable in climates where the weather can be changeable, such as the United Kingdom.[7] Unlike wooden or metal sheds, which often require a permit to build, in many areas, plastic sheds do not. However, this is something property owners will need to verify. A call to your council/town's planning or building code office can provide information on permits.[8] Domestic wooden sheds. Example of wood storage shed from US cedar shed builder. Wooden sheds have a natural look that can blend in well with garden environments. Despite the strength of wood, over time, untreated and neglected wood can rot, split, warp or become susceptible to mold and mildew, so wood sheds should be treated for protection with stain and varnish. Wood sheds need regular maintenance. This includes keeping plant matter and debris from piling up beside the walls and on the roof, and occasional rot-proofing with preservative. Sheds are sometimes also re-stained or varnished at times for aesthetic and wood protection reasons. Fire and, in some regions, termite attack are also potential problems. Stains and preservatives can be applied to wood sheds to prevent damage to the wood caused by exposure to rain, damp ground, UV light, harsh climatic conditions, fungal attack and wood-boring insects. If a coloured preservative oil or stain is used, a wooden shed can either be made to stand out as a feature within a garden, or to blend in with its surroundings. Red cedar coloured stain is popular. Some types of wood, such as cedar, are more naturally resistant to water damage. When looking for a wooden shed, it is important to understand the difference between the two types of preservative used in their manufacture. The timber will have been treated in one of two ways: dip treatment and pressure treatment. Dip-treated sheds are made from components that are lowered into a tank of preservative before the panels are assembled. This is a quick and simple process which keeps costs down and encourages manufacturers to produce a wide variety, making dip-treated sheds the most popular and affordable type on the market. They are easily recognisable by their golden brown colour, which is due to a dye added to the preservative. Most manufacturers offer a 10-year anti-rot guarantee on dip-treated sheds, but they have to be re-coated every year or two. [2] Pressure-treated sheds are made from timber planks which have had the moisture sucked out of them under vacuum conditions in a special cylinder. A powerful preservative is then forced into the wood at high pressure until it is absorbed deep into the grain, becoming an integral part of the timber. This provides excellent protection against the weather - so much so that manufacturers generally give a 15-year anti-rot guarantee. These sheds are usually distinguished by a pale green tinge which will fade eventually to a silvery grey. Although pressure-treated sheds tend to be more expensive than dip-treated ones, their big advantage is that they won't need any further preservative treatment during the guarantee period, saving owners time and money. [3] One advantage of using wood sheds over metal versions is that it is easier to modify them by adding windows, doors, shelving, or exterior trim (etc.) because wood can be cut and drilled using commonly available tools, whereas a plastic or metal shed requires specialized tools. Some homeowners may prefer wood sheds because wood is a renewable resource. An Amish-style vinyl-sided shed Vinyl-sided sheds are typically built with standard wood framing construction and oriented strand board (OSB) on the walls covered with standard vinyl siding. The vinyl siding protects the OSB wood and the frame from moisture from rain and snow. Vinyl-sided sheds never need to be painted, and are maintenance-free. They are stronger than plastic or metal sheds, and are usually built to conform with the local building codes. They offer good value for money because they hold up in all weather, including winters with heavy snowfall, as they use a strong wooden frame and the OSB panels have stronger structural support than thin metal or PVC siding or roofs. Metal, plastic and resin sheds are cheaper, but they cannot handle the weight of snow in winter (roofs may cave in). Vinyl sheds also offer more colour options. In the early and middle years of the 20th century, many garden sheds and domestic garages were made of asbestos-cement sheets supported on a very light angle-iron frame. Concerns about safety led to the practice being discontinued, but they were cheap and long-lasting, and many can still be seen in British gardens. Advice on continued use or disposal is available.[9] Since 2013 garden sheds have been available in the UK made from TPR - a sustainable alternative to concrete.[10] They are typically coated in a marine gelcoat and are far stronger and more durable than traditional sheds. A shed made from TPR became the first Secured by Design-approved shed in 2014[11] A shed near Sydney, Australia In Australia and New Zealand the term shed can be used to refer to any building that is not a residence and which may be open at the ends or sides, or both. Australia's passion for sheds is documented in Mark Thomson's Blokes and Sheds (1998).[12] Jim Hopkins' similarly titled Blokes & Sheds (1998), with photographer Julie Riley Hopkins, profiles amateur inventors from across New Zealand.[13] Hopkins and Riley followed up that book with Inventions from the Shed (1999)[14] and a 5-part film documentary series with the same name.[15] Gordon Thorburn also examined the shed proclivity in his book Men and Sheds (2002),[16] as did Gareth Jones in Shed Men (2004).[17] Recently, "Men's Sheds" have become common in Australia.[18] In New Zealand, the bi-monthly magazine The Shed appeals to the culture of "blokes" who do woodwork or metalwork DIY projects in their sheds. The Australian Men's Shed Association is one organisation that has been set up involving sheds. A much-loved and frequently restored British shed in Lincolnshire Another magazine called The Shed, a bimonthly PDF magazine produced in the UK, but with a global audience, targets people who work (usually in creative industries) in garden offices, sheds and other shed-like atmospheres.[citation needed] In the UK, people have long enjoyed working in their potting sheds; the slang term "sheddie", to refer to a person enamoured of shed-building, testifies to the place of sheds in UK popular culture. A Usenet Newsgroup "uk.rec.sheds" has long championed this subculture: their lengthy FAQ[19] is a masterly summary of the idea. Shedworking: A lifestyle guide for shedworkers is published at Blogger. Author Gordon Thorburn examined the shed proclivity in his book Men and Sheds, which argues that a "place of retreat" is a "male necessity" which provides men with solace, especially during their retirement.[20] In contrast, in the novel Cold Comfort Farm by Stella Gibbons, Aunt Edna Doom saw "something nasty in the woodshed" and retreated to her bed for half a century. To woodshed, or 'shed, in jazz jargon, is "to shut oneself up, away from the world, and practice long and hard, as in 'going to the woodshed'."[21] The word is recorded in English since 1481, as shadde, possibly a variant of shade. The word shade comes from the Old English word "sceadu", which means "shade, shadow, darkness". The term's P.Gmc. cognate, "skadwo" also means "shady place, protection from glare or heat".[22] The Old English word is spelled in different ways, such as "shadde", "shad" or "shedde", all of which come from an "Old Teutonic/Anglo-Saxon root word for separation or division". The first attested usage of the word, in 1481, was in the sentence, "A yearde in whiche was a shadde where in were six grete dogges". The Anglo Saxon word "shud", which means "cover" may also have been part of the development of the word. In 1440, a "shud" was defined as a "... schudde, hovel, swyne kote or howse of sympyl hyllynge [covering] to kepe yn beestys".[citation needed] A waterside shed in Sweden

<< Previous Article

>> Next Article 

All Articles